Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.
نویسندگان
چکیده
Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.
منابع مشابه
Comparison of Simulated Annealing, Genetic, and Tabu Search Algorithms for Fracture Network Modeling
The mathematical modeling of fracture networks is critical for the exploration and development of natural resources. Fractures can help the production of petroleum, water, and geothermal energy. They also greatly influence the drainage and production of methane gas from coal beds. Orientation and spatial distribution of fractures in rocks are important factors in controlling fluid flow. The obj...
متن کاملA Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks
A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop...
متن کاملIncorporation of conceptual and parametric uncertainty into radionuclide flux estimates from a fractured granite rock mass
Detailed numerical flow and radionuclide simulations are used to predict the flux of radionuclides from three underground nuclear tests located in the Climax granite stock on the Nevada Test Site. The numerical modeling approach consists of both a regional-scale and local-scale flow model. The regional-scale model incorporates conceptual model uncertainty through the inclusion of five models of...
متن کاملInfluence of fracture statistics on advective transport and implications for geologic repositories
[1] Large-scale (2.5 km by 2.5 km) simulations of fluid flow and solute transport through low-permeability fractured rock are assessed to determine suitability for hosting a nuclear waste repository. Multiple realizations of fracture networks with statistically realistic features are generated according to established methods. A novel continuum method provides a basis for solving flow and simul...
متن کاملDiscrete element modeling of explosion-induced fracture extension in jointed rock masses
The explosion process of explosives in a borehole applies a very high pressure on its surrounding rock media. This process can initiate and propagate rock fractures, and finally, may result in the rock fragmentation. Rock fragmentation is mainly caused by the propagation of inherent pre-existing fractures of the rock mass and also from the extension of the newly formed cracks within the intact ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 5 شماره
صفحات -
تاریخ انتشار 2015